
Caption: Far more delicate than the tug on a spider's web: If a fifth force is out there, its impact on our world must be nearly imperceptible. iStockphoto
At the turn of the 20th century, finding a new form of radiation could put a physicist’s career on the fast track. Wilhelm Röntgen changed the world by discovering X-rays in 1895. Soon thereafter, Ernest Rutherford and Paul Villard identified three different kinds of radiation, dubbed alpha, beta, and gamma rays, emitted by radioactive compounds. In 1903 French scientist René Blondlot added to the frenzy with his announcement of N-rays, a strangely democratic form of radiation emitted by wood, iron, living organisms—just about anything at all.
Some 300 scientific papers were written about N-rays. There was just one problem: They weren’t real. A skeptical physicist named Robert Wood visited Blondlot’s lab and secretly removed a key part of his apparatus; this had no effect on Blondlot’s perception of N-rays, showing that they were purely a product of the imagination.
Blondlot’s reversal of fortune served as a reminder that the world isn’t really full of countless kinds of radiation waiting patiently to be discovered. Nature is more parsimonious than that. Even as forms of radiation seemed to proliferate, theory was driving physics the other way, toward consolidation. X-rays and gamma rays were soon recognized as different forms of electromagnetic radiation, like radio waves and visible light but more energetic. Beta rays are simply fast-moving electrons, and alpha rays are fast-moving helium nuclei. Beneath the dazzling array of new phenomena lurked just a few simple ingredients...